¿Qué es "Big Data"?
Debido al gran avance que existe día con día en las tecnologías de información, las organizaciones se han tenido que enfrentar a nuevos desafíos que les permitan analizar, descubrir y entender más allá de lo que sus herramientas tradicionales reportan sobre su información, al mismo tiempo que durante los últimos años el gran crecimiento de las aplicaciones disponibles en internet (geo-referenciamiento, redes sociales, etc.) han sido parte importante en las decisiones de negocio de las empresas. El presente artículo tiene como propósito introducir al lector en el concepto de Big Data y describir algunas características de los componentes principales que constituyen una solución de este tipo.

Introducción:
El primer cuestionamiento que posiblemente llegue a su mente en este momento es ¿Qué es Big Data y porqué se ha vuelto tan importante? pues bien, en términos generales podríamos referirnos como a la tendencia en el avance de la tecnología que ha abierto las puertas hacia un nuevo enfoque de entendimiento y toma de decisiones, la cual es utilizada para describir enormes cantidades de datos (estructurados, no estructurados y semi estructurados) que tomaría demasiado tiempo y sería muy costoso cargarlos a un base de datos relacional para su análisis. De tal manera que, el concepto de Big Data aplica para toda aquella información que no puede ser procesada o analizada utilizando procesos o herramientas tradicionales. Sin embargo, Big Data no se refiere a alguna cantidad en específico, ya que es usualmente utilizado cuando se habla en términos de petabytes y exabytes de datos. Entonces ¿Cuánto es demasiada información de manera que sea elegible para ser procesada y analizada utilizando Big Data? Analicemos primeramente en términos de bytes:
Gigabyte = 109 = 1,000,000,000
Terabyte = 1012 = 1,000,000,000,000
Petabyte = 1015 = 1,000,000,000,000,000
Exabyte = 1018 = 1,000,000,000,000,000,000
Además del gran volumen de información, esta existe en una gran variedad de datos que pueden ser representados de diversas maneras en todo el mundo, por ejemplo de dispositivos móviles, audio, video, sistemas GPS, incontables sensores digitales en equipos industriales, automóviles, medidores eléctricos, veletas, anemómetros, etc., los cuales pueden medir y comunicar el posicionamiento, movimiento, vibración, temperatura, humedad y hasta los cambios químicos que sufre el aire, de tal forma que las aplicaciones que analizan estos datos requieren que la velocidad de respuesta sea lo demasiado rápida para lograr obtener la información correcta en el momento preciso. Estas son las características principales de una oportunidad para Big Data.
Es importante entender que las bases de datos convencionales son una parte importante y relevante para una solución analítica. De hecho, se vuelve mucho más vital cuando se usa en conjunto con la plataforma de Big Data. Pensemos en nuestras manos izquierda y derecha, cada una ofrece fortalezas individuales para cada tarea en específico. Por ejemplo, un beisbolista sabe que una de sus manos es mejor para lanzar la pelota y la otra para atraparla; puede ser que cada mano intente hacer la actividad de la otra, mas sin embargo, el resultado no será el más óptimo.

¿De dónde proviene toda esa información?
Los seres humanos estamos creando y almacenando información constantemente y cada vez más en cantidades astronómicas. Se podría decir que si todos los bits y bytes de datos del último año fueran guardados en CD's, se generaría una gran torre desde la Tierra hasta la Luna y de regreso.
Esta contribución a la acumulación masiva de datos la podemos encontrar en diversas industrias, las compañías mantienen grandes cantidades de datos transaccionales, reuniendo información acerca de sus clientes, proveedores, operaciones, etc., de la misma manera sucede con el sector público. En muchos países se administran enormes bases de datos que contienen datos de censo de población, registros médicos, impuestos, etc., y si a todo esto le añadimos transacciones financieras realizadas en línea o por dispositivos móviles, análisis de redes sociales (en Twitter son cerca de 12 Terabytes de tweets creados diariamente y Facebook almacena alrededor de 100 Petabytes de fotos y videos), ubicación geográfica mediante coordenadas GPS, en otras palabras, todas aquellas actividades que la mayoría de nosotros realizamos varias veces al día con nuestros "smartphones", estamos hablando de que se generan alrededor de 2.5 quintillones de bytes diariamente en el mundo.
1 quintillón = 10 30 = 1,000,000,000,000,000,000,000,000,000,000
De acuerdo con un estudio realizado por Cisco[1], entre el 2011 y el 2016 la cantidad de tráfico de datos móviles crecerá a una tasa anual de 78%, así como el número de dispositivos móviles conectados a Internet excederá el número de habitantes en el planeta. Las naciones unidas proyectan que la población mundial alcanzará los 7.5 billones para el 2016 de tal modo que habrá cerca de 18.9 billones de dispositivos conectados a la red a escala mundial, esto conllevaría a que el tráfico global de datos móviles alcance 10.8 Exabytes mensuales o 130 Exabytes anuales. Este volumen de tráfico previsto para 2016 equivale a 33 billones de DVDs anuales o 813 cuatrillones de mensajes de texto.
Pero no solamente somos los seres humanos quienes contribuimos a este crecimiento enorme de información, existe también la comunicación denominada máquina a máquina (M2M machine-to-machine) cuyo valor en la creación de grandes cantidades de datos también es muy importante. Sensores digitales instalados en contenedores para determinar la ruta generada durante una entrega de algún paquete y que esta información sea enviada a las compañías de transportación, sensores en medidores eléctricos para determinar el consumo de energía a intervalos regulares para que sea enviada esta información a las compañías del sector energético. Se estima que hay más de 30 millones de sensores interconectados en distintos sectores como automotriz, transportación, industrial, servicios, comercial, etc. y se espera que este número crezca en un 30% anualmente.
Ventajas y Desventajas
Big Data es un gran banco de datos disponibles para las empresas, con los que pueden trabajar con más dedicación en los gustos específicos de los usuarios, de forma casi que personalizada. Es un valioso recurso de información para diseñar estrategias más válidas y reales.
Contando con información más precisa, se minimiza el riesgos en la formulación de estrategias y políticas de mercado. La comunicación directa con el cliente, también permitirá una serie de reformas en productos o servicios, gracias a los aportes de los diferentes criterios y opiniones.
Más allá de las empresas e información personal, el Big Data aportará en un futuro información general acerca del clima, expectativas económicas, las proyecciones de las diferentes industrias, análisis económicos y mucho más, aportando así grandes bases de conocimiento para sus propósitos individuales y generales.
No obstante y evidentemente, el Big Data también tiene varios riesgos o desventajas, como el acceso a información que conservamos en todos los medios de la red: correos, cuentas, fotos, mensajes, información personal y profesional, todo está claramente a los ojos en este gran mar de datos.
A pesar de eso, la conclusión es que los beneficios y logros que se esperan con el acceso al universo de datos apuntan a ser significativamente mayores a nivel general, frente a los riesgos individuales que supone el fácil acceso a la información.
Conclusiones
La naturaleza de la información hoy es diferente a la información en el pasado. Debido a la abundacia de sensores, micrófonos, cámaras, escáneres médicos, imágenes, etc. en nuestras vidas, los datos generados a partir de estos elementos serán dentro de poco el segmento más grande de toda la información disponible.
El uso de Big Data ha ayudado a los investigadores a descubrir cosas que les podrían haber tomado años en descubrir por si mismos sin el uso de estas herramientas, debido a la velocidad del análisis, es posible que el analista de datos pueda cambiar sus ideas basándose en el resultado obtenido y retrabajar el procedimiento una y otra vez hasta encontrar el verdadero valor al que se está tratando de llegar.
Como se pudo notar en el presente artículo, implementar una solución alrededor de Big Data implica de la integración de diversos componentes y proyectos que en conjunto forman el ecosistema necesario para analizar grandes cantidades de datos.
Sin una plataforma de Big Data se necesitaría que desarrollar adicionalmente código que permita administrar cada uno de esos componentes como por ejemplo: manejo de eventos, conectividad, alta disponibilidad, seguridad, optimización y desempeño, depuración, monitoreo, administración de las aplicaciones, SQL y scripts personalizados.

IBM cuenta con una plataforma de Big Data basada en dos productos principales: IBM InfoSphere BigInsights™ e IBM InfoSphere Streams™, además de su reciente adquisición Vivisimo, los cuales están diseñados para resolver este tipo de problemas. Estas herramientas están construidas para ser ejecutadas en sistemas distribuidos a gran escala diseñados para tratar con grandes volúmenes de información, analizando tanto datos estructurados como no estructurados.
Dentro de la plataforma de IBM existen más de 100 aplicaciones de ejemplo recolectadas del trabajo que se ha realizado internamente en la empresa para casos de uso e industrias específicas. Estos aplicativos están implementados dentro de la solución de manera que las organizaciones puedan dedicar su tiempo a analizar y no a implementar.